Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Garfield's Proof:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 178 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

Multiplication Square

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

Matter of Scale

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Prove Pythagoras Theorem using enlargements and scale factors.

problem icon

The Frieze Tree

Stage: 3 and 4

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

problem icon

Common Divisor

Stage: 4 Challenge Level: Challenge Level:1

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

problem icon

Online

Stage: 3 Challenge Level: Challenge Level:1

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

problem icon

Picturing Pythagorean Triples

Stage: 4 and 5

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

problem icon

Chocolate Maths

Stage: 3 Challenge Level: Challenge Level:1

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

problem icon

Go Forth and Generalise

Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

problem icon

Ordered Sums

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

problem icon

Zig Zag

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

problem icon

Number Rules - OK

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

problem icon

Perfectly Square

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The sums of the squares of three related numbers is also a perfect square - can you explain why?

problem icon

Never Prime

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

problem icon

More Number Pyramids

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

problem icon

The Triangle Game

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you discover whether this is a fair game?

problem icon

Composite Notions

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

problem icon

Volume of a Pyramid and a Cone

Stage: 3

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

problem icon

Proof Sorter - Quadratic Equation

Stage: 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

problem icon

Dicing with Numbers

Stage: 3 Challenge Level: Challenge Level:1

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

problem icon

Round and Round

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

problem icon

Circle Box

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

problem icon

Janine's Conjecture

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

problem icon

The Pillar of Chios

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

problem icon

Rhombus in Rectangle

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

problem icon

For What?

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

problem icon

Geometric Parabola

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

problem icon

Pythagorean Triples I

Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

problem icon

Always Perfect

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

problem icon

On the Importance of Pedantry

Stage: 3, 4 and 5

A introduction to how patterns can be deceiving, and what is and is not a proof.

problem icon

Kite in a Square

Stage: 4 Challenge Level: Challenge Level:1

Can you make sense of the three methods to work out the area of the kite in the square?

problem icon

Fitting In

Stage: 4 Challenge Level: Challenge Level:1

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

problem icon

Pythagorean Triples II

Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

problem icon

Pythagoras Proofs

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you make sense of these three proofs of Pythagoras' Theorem?

problem icon

Mindreader

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

problem icon

Prime AP

Stage: 4 Challenge Level: Challenge Level:1

Show that if three prime numbers, all greater than 3, form an arithmetic progression then the common difference is divisible by 6. What if one of the terms is 3?

problem icon

Sixational

Stage: 4 and 5 Challenge Level: Challenge Level:1

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

problem icon

Whole Number Dynamics IV

Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

problem icon

Whole Number Dynamics I

Stage: 4 and 5

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

problem icon

A Biggy

Stage: 4 Challenge Level: Challenge Level:1

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

problem icon

A Knight's Journey

Stage: 4 and 5

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

problem icon

Mediant

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

problem icon

Mouhefanggai

Stage: 4

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

problem icon

Whole Number Dynamics II

Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

problem icon

Classifying Solids Using Angle Deficiency

Stage: 3 and 4 Challenge Level: Challenge Level:1

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

problem icon

Logic, Truth Tables and Switching Circuits Challenge

Stage: 3, 4 and 5

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

problem icon

Magic Squares II

Stage: 4 and 5

An article which gives an account of some properties of magic squares.

problem icon

Take Three from Five

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

problem icon

Why 24?

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

problem icon

Whole Number Dynamics V

Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

problem icon

Angle Trisection

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.