Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

We have exactly 100 coins. There are five different values of coins. We have decided to buy a piece of computer software for 39.75. We have the correct money, not a penny more, not a penny less! Can. . . .

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Baker, Cooper, Jones and Smith are four people whose occupations are teacher, welder, mechanic and programmer, but not necessarily in that order. What is each person’s occupation?

Here are some examples of 'cons', and see if you can figure out where the trick is.

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

This jar used to hold perfumed oil. It contained enough oil to fill granid silver bottles. Each bottle held enough to fill ozvik golden goblets and each goblet held enough to fill vaswik crystal. . . .

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This is the second article on right-angled triangles whose edge lengths are whole numbers.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

What can you say about the angles on opposite vertices of any cyclic quadrilateral? Working on the building blocks will give you insights that may help you to explain what is special about them.

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

From a group of any 4 students in a class of 30, each has exchanged Christmas cards with the other three. Show that some students have exchanged cards with all the other students in the class. How. . . .

Six points are arranged in space so that no three are collinear. How many line segments can be formed by joining the points in pairs?

Nine cross country runners compete in a team competition in which there are three matches. If you were a judge how would you decide who would win?

I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?

Can you fit Ls together to make larger versions of themselves?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?

Can you explain why a sequence of operations always gives you perfect squares?

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

Make an eight by eight square, the layout is the same as a chessboard. You can print out and use the square below. What is the area of the square? Divide the square in the way shown by the red dashed. . . .

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

After some matches were played, most of the information in the table containing the results of the games was accidentally deleted. What was the score in each match played?

A introduction to how patterns can be deceiving, and what is and is not a proof.

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.