Search by Topic

Resources tagged with Mathematical reasoning & proof similar to The Olympic Torch Tour:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 177 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

Pattern of Islands

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

problem icon

Königsberg

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

problem icon

Tourism

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

problem icon

Symmetric Tangles

Stage: 4

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

problem icon

Geometry and Gravity 2

Stage: 3, 4 and 5

This is the second of two articles and discusses problems relating to the curvature of space, shortest distances on surfaces, triangulations of surfaces and representation by graphs.

problem icon

Konigsberg Plus

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

problem icon

Online

Stage: 3 Challenge Level: Challenge Level:1

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

problem icon

Add 3 Dice

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to. . . .

problem icon

Aba

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

problem icon

Flight of the Flibbins

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

problem icon

Tis Unique

Stage: 3 Challenge Level: Challenge Level:1

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

problem icon

Clocked

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

problem icon

How Many Dice?

Stage: 3 Challenge Level: Challenge Level:1

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

problem icon

Knight Defeated

Stage: 4 Challenge Level: Challenge Level:1

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .

problem icon

Hockey

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

After some matches were played, most of the information in the table containing the results of the games was accidentally deleted. What was the score in each match played?

problem icon

Calendar Capers

Stage: 3 Challenge Level: Challenge Level:1

Choose any three by three square of dates on a calendar page. Circle any number on the top row, put a line through the other numbers that are in the same row and column as your circled number. Repeat. . . .

problem icon

Shuffle Shriek

Stage: 3 Challenge Level: Challenge Level:1

Can you find all the 4-ball shuffles?

problem icon

The Genie in the Jar

Stage: 3 Challenge Level: Challenge Level:1

This jar used to hold perfumed oil. It contained enough oil to fill granid silver bottles. Each bottle held enough to fill ozvik golden goblets and each goblet held enough to fill vaswik crystal. . . .

problem icon

More Mathematical Mysteries

Stage: 3 Challenge Level: Challenge Level:1

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

problem icon

Concrete Wheel

Stage: 3 Challenge Level: Challenge Level:1

A huge wheel is rolling past your window. What do you see?

problem icon

1 Step 2 Step

Stage: 3 Challenge Level: Challenge Level:1

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

problem icon

Unit Fractions

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

problem icon

Not Necessarily in That Order

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Baker, Cooper, Jones and Smith are four people whose occupations are teacher, welder, mechanic and programmer, but not necessarily in that order. What is each person’s occupation?

problem icon

Russian Cubes

Stage: 4 Challenge Level: Challenge Level:1

How many different cubes can be painted with three blue faces and three red faces? A boy (using blue) and a girl (using red) paint the faces of a cube in turn so that the six faces are painted. . . .

problem icon

Dicing with Numbers

Stage: 3 Challenge Level: Challenge Level:1

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

problem icon

N000ughty Thoughts

Stage: 4 Challenge Level: Challenge Level:1

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

problem icon

Some Circuits in Graph or Network Theory

Stage: 4 and 5

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

problem icon

A Chordingly

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

problem icon

Tessellating Hexagons

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Is it true that any convex hexagon will tessellate if it has a pair of opposite sides that are equal, and three adjacent angles that add up to 360 degrees?

problem icon

Convex Polygons

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

problem icon

Ordered Sums

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

problem icon

Go Forth and Generalise

Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

problem icon

Problem Solving, Using and Applying and Functional Mathematics

Stage: 1, 2, 3, 4 and 5 Challenge Level: Challenge Level:1

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

problem icon

Growing Ls

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you fit Ls together to make larger versions of themselves?

problem icon

Cycle It

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

problem icon

Children at Large

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

problem icon

Doodles

Stage: 4 Challenge Level: Challenge Level:1

A 'doodle' is a closed intersecting curve drawn without taking pencil from paper. Only two lines cross at each intersection or vertex (never 3), that is the vertex points must be 'double points' not. . . .

problem icon

Eleven

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Replace each letter with a digit to make this addition correct.

problem icon

Triangle Inequality

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

problem icon

Cross-country Race

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

problem icon

Multiplication Square

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

Con Tricks

Stage: 3

Here are some examples of 'cons', and see if you can figure out where the trick is.

problem icon

Sprouts Explained

Stage: 2, 3, 4 and 5

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

problem icon

Master Minding

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Your partner chooses two beads and places them side by side behind a screen. What is the minimum number of guesses you would need to be sure of guessing the two beads and their positions?

problem icon

Winning Team

Stage: 3 Challenge Level: Challenge Level:1

Nine cross country runners compete in a team competition in which there are three matches. If you were a judge how would you decide who would win?

problem icon

Tri-colour

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Six points are arranged in space so that no three are collinear. How many line segments can be formed by joining the points in pairs?

problem icon

Greetings

Stage: 3 Challenge Level: Challenge Level:1

From a group of any 4 students in a class of 30, each has exchanged Christmas cards with the other three. Show that some students have exchanged cards with all the other students in the class. How. . . .

problem icon

Classifying Solids Using Angle Deficiency

Stage: 3 and 4 Challenge Level: Challenge Level:1

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

problem icon

Take Three from Five

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

problem icon

Sticky Numbers

Stage: 3 Challenge Level: Challenge Level:1

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?