Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Base Puzzle:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 178 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

Our Ages

Stage: 4 Challenge Level: Challenge Level:1

I am exactly n times my daughter's age. In m years I shall be exactly (n-1) times her age. In m2 years I shall be exactly (n-2) times her age. After that I shall never again be an exact multiple of. . . .

problem icon

Cycle It

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

problem icon

For What?

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

problem icon

More Mathematical Mysteries

Stage: 3 Challenge Level: Challenge Level:1

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

problem icon

Aba

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

problem icon

Reverse to Order

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

problem icon

Growing Ls

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you fit Ls together to make larger versions of themselves?

problem icon

Composite Notions

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

problem icon

Number Rules - OK

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

problem icon

Never Prime

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

problem icon

DOTS Division

Stage: 4 Challenge Level: Challenge Level:1

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

problem icon

Diophantine N-tuples

Stage: 4 Challenge Level: Challenge Level:1

Take any whole number q. Calculate q^2 - 1. Factorize q^2-1 to give two factors a and b (not necessarily q+1 and q-1). Put c = a + b + 2q . Then you will find that ab+1 , bc+1 and ca+1 are all. . . .

problem icon

Euler's Squares

Stage: 4 Challenge Level: Challenge Level:1

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square. Three of the numbers that he found are a = 18530, b=65570, c=45986. Find the fourth number, x. You. . . .

problem icon

Square Mean

Stage: 4 Challenge Level: Challenge Level:1

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

problem icon

N000ughty Thoughts

Stage: 4 Challenge Level: Challenge Level:1

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

problem icon

Mod 3

Stage: 4 Challenge Level: Challenge Level:1

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

problem icon

A Biggy

Stage: 4 Challenge Level: Challenge Level:1

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

problem icon

Common Divisor

Stage: 4 Challenge Level: Challenge Level:1

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

problem icon

Ordered Sums

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

problem icon

Thirty Nine, Seventy Five

Stage: 3 Challenge Level: Challenge Level:1

We have exactly 100 coins. There are five different values of coins. We have decided to buy a piece of computer software for 39.75. We have the correct money, not a penny more, not a penny less! Can. . . .

problem icon

Converse

Stage: 4 Challenge Level: Challenge Level:1

Clearly if a, b and c are the lengths of the sides of a triangle and the triangle is equilateral then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true, and if so can you prove it? That is if. . . .

problem icon

Eleven

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Replace each letter with a digit to make this addition correct.

problem icon

Cross-country Race

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

problem icon

Dalmatians

Stage: 4 and 5 Challenge Level: Challenge Level:1

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

problem icon

Adding All Nine

Stage: 3 Challenge Level: Challenge Level:1

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

problem icon

Always Perfect

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

problem icon

Ratty

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

problem icon

Elevenses

Stage: 3 Challenge Level: Challenge Level:1

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

problem icon

Go Forth and Generalise

Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

problem icon

Power Mad!

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

problem icon

Cyclic Quadrilaterals

Stage: 3 Challenge Level: Challenge Level:1

What can you say about the angles on opposite vertices of any cyclic quadrilateral? Working on the building blocks will give you insights that may help you to explain what is special about them.

problem icon

What Numbers Can We Make Now?

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

problem icon

A Long Time at the Till

Stage: 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

problem icon

Logic

Stage: 2 and 3

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

problem icon

Unit Fractions

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

problem icon

Power Quady

Stage: 4 Challenge Level: Challenge Level:1

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

problem icon

Postage

Stage: 4 Challenge Level: Challenge Level:1

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

problem icon

Take Three from Five

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

problem icon

Whole Number Dynamics I

Stage: 4 and 5

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

problem icon

Whole Number Dynamics IV

Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

problem icon

Is it Magic or Is it Maths?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Here are three 'tricks' to amaze your friends. But the really clever trick is explaining to them why these 'tricks' are maths not magic. Like all good magicians, you should practice by trying. . . .

problem icon

Sixational

Stage: 4 and 5 Challenge Level: Challenge Level:1

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

problem icon

More Marbles

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?

problem icon

Even So

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

problem icon

Tis Unique

Stage: 3 Challenge Level: Challenge Level:1

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

problem icon

Tri-colour

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Six points are arranged in space so that no three are collinear. How many line segments can be formed by joining the points in pairs?

problem icon

Marbles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?

problem icon

Winning Team

Stage: 3 Challenge Level: Challenge Level:1

Nine cross country runners compete in a team competition in which there are three matches. If you were a judge how would you decide who would win?

problem icon

Always the Same

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

problem icon

Greetings

Stage: 3 Challenge Level: Challenge Level:1

From a group of any 4 students in a class of 30, each has exchanged Christmas cards with the other three. Show that some students have exchanged cards with all the other students in the class. How. . . .