# Search by Topic

#### Resources tagged with Mathematical reasoning & proof similar to In Particular:

Filter by: Content type:
Stage:
Challenge level:

### There are 178 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

### Our Ages

##### Stage: 4 Challenge Level:

I am exactly n times my daughter's age. In m years I shall be exactly (n-1) times her age. In m2 years I shall be exactly (n-2) times her age. After that I shall never again be an exact multiple of. . . .

### Diophantine N-tuples

##### Stage: 4 Challenge Level:

Take any whole number q. Calculate q^2 - 1. Factorize q^2-1 to give two factors a and b (not necessarily q+1 and q-1). Put c = a + b + 2q . Then you will find that ab+1 , bc+1 and ca+1 are all. . . .

### Whole Number Dynamics I

##### Stage: 4 and 5

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

### Whole Number Dynamics IV

##### Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

### Whole Number Dynamics V

##### Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

### Whole Number Dynamics III

##### Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

### Whole Number Dynamics II

##### Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

### For What?

##### Stage: 4 Challenge Level:

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

### Mouhefanggai

##### Stage: 4

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

### Pareq Exists

##### Stage: 4 Challenge Level:

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

### Impossible Sandwiches

##### Stage: 3, 4 and 5

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

### Magic Squares II

##### Stage: 4 and 5

An article which gives an account of some properties of magic squares.

### Picturing Pythagorean Triples

##### Stage: 4 and 5

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

### Pythagorean Triples II

##### Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

### Always Perfect

##### Stage: 4 Challenge Level:

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

### Dalmatians

##### Stage: 4 and 5 Challenge Level:

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

### Ordered Sums

##### Stage: 4 Challenge Level:

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

### Janine's Conjecture

##### Stage: 4 Challenge Level:

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

### Leonardo's Problem

##### Stage: 4 and 5 Challenge Level:

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

### Proof: A Brief Historical Survey

##### Stage: 4 and 5

If you think that mathematical proof is really clearcut and universal then you should read this article.

### Gift of Gems

##### Stage: 4 Challenge Level:

Four jewellers possessing respectively eight rubies, ten saphires, a hundred pearls and five diamonds, presented, each from his own stock, one apiece to the rest in token of regard; and they. . . .

### Zig Zag

##### Stage: 4 Challenge Level:

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

### Long Short

##### Stage: 4 Challenge Level:

A quadrilateral inscribed in a unit circle has sides of lengths s1, s2, s3 and s4 where s1 ≤ s2 ≤ s3 ≤ s4. Find a quadrilateral of this type for which s1= sqrt2 and show s1 cannot. . . .

### To Prove or Not to Prove

##### Stage: 4 and 5

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

### Proof Sorter - Quadratic Equation

##### Stage: 4 and 5 Challenge Level:

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

### Pythagorean Triples I

##### Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

### Yih or Luk Tsut K'i or Three Men's Morris

##### Stage: 3, 4 and 5 Challenge Level:

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

### Iffy Logic

##### Stage: 4 Short Challenge Level:

Can you rearrange the cards to make a series of correct mathematical statements?

### The Great Weights Puzzle

##### Stage: 4 Challenge Level:

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

### Euler's Squares

##### Stage: 4 Challenge Level:

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square. Three of the numbers that he found are a = 18530, b=65570, c=45986. Find the fourth number, x. You. . . .

### Converse

##### Stage: 4 Challenge Level:

Clearly if a, b and c are the lengths of the sides of a triangle and the triangle is equilateral then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true, and if so can you prove it? That is if. . . .

##### Stage: 4 and 5 Challenge Level:

Which of these roads will satisfy a Munchkin builder?

### Tree Graphs

##### Stage: 4 Challenge Level:

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree. . . .

### Never Prime

##### Stage: 4 Challenge Level:

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

### Find the Fake

##### Stage: 4 Challenge Level:

There are 12 identical looking coins, one of which is a fake. The counterfeit coin is of a different weight to the rest. What is the minimum number of weighings needed to locate the fake coin?

### Some Circuits in Graph or Network Theory

##### Stage: 4 and 5

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

### A Long Time at the Till

##### Stage: 4 and 5 Challenge Level:

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

### Advent Calendar 2011 - Secondary

##### Stage: 3, 4 and 5 Challenge Level:

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

### L-triominoes

##### Stage: 4 Challenge Level:

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

### Unit Interval

##### Stage: 4 and 5 Challenge Level:

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

### On the Importance of Pedantry

##### Stage: 3, 4 and 5

A introduction to how patterns can be deceiving, and what is and is not a proof.

### There's a Limit

##### Stage: 4 and 5 Challenge Level:

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

### What Numbers Can We Make Now?

##### Stage: 3 and 4 Challenge Level:

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

### Mod 3

##### Stage: 4 Challenge Level:

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

### Top-heavy Pyramids

##### Stage: 3 Challenge Level:

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

### N000ughty Thoughts

##### Stage: 4 Challenge Level:

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

### Geometric Parabola

##### Stage: 4 Challenge Level:

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

### Picture Story

##### Stage: 4 Challenge Level:

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

### Rotating Triangle

##### Stage: 3 and 4 Challenge Level:

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

### Cosines Rule

##### Stage: 4 Challenge Level:

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.