Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

An equilateral triangle is sitting on top of a square. What is the radius of the circle that circumscribes this shape?

Choose any two numbers. Call them a and b. Work out the arithmetic mean and the geometric mean. Which is bigger? Repeat for other pairs of numbers. What do you notice?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

I am exactly n times my daughter's age. In m years I shall be exactly (n-1) times her age. In m2 years I shall be exactly (n-2) times her age. After that I shall never again be an exact multiple of. . . .

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Can you make sense of these three proofs of Pythagoras' Theorem?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

A introduction to how patterns can be deceiving, and what is and is not a proof.

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

An article which gives an account of some properties of magic squares.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

Can you make sense of the three methods to work out the area of the kite in the square?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Show that if three prime numbers, all greater than 3, form an arithmetic progression then the common difference is divisible by 6. What if one of the terms is 3?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.