This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Choose any three by three square of dates on a calendar page...

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

If you think that mathematical proof is really clearcut and universal then you should read this article.

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Make an eight by eight square, the layout is the same as a chessboard. You can print out and use the square below. What is the area of the square? Divide the square in the way shown by the red dashed. . . .

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Here are some examples of 'cons', and see if you can figure out where the trick is.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Can you make sense of these three proofs of Pythagoras' Theorem?

What can you say about the angles on opposite vertices of any cyclic quadrilateral? Working on the building blocks will give you insights that may help you to explain what is special about them.

Can you fit Ls together to make larger versions of themselves?

Can you make sense of the three methods to work out the area of the kite in the square?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

We have exactly 100 coins. There are five different values of coins. We have decided to buy a piece of computer software for 39.75. We have the correct money, not a penny more, not a penny less! Can. . . .

Prove Pythagoras' Theorem using enlargements and scale factors.

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .