Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Show that if three prime numbers, all greater than 3, form an arithmetic progression then the common difference is divisible by 6. What if one of the terms is 3?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Which set of numbers that add to 10 have the largest product?

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Is it true that any convex hexagon will tessellate if it has a pair of opposite sides that are equal, and three adjacent angles that add up to 360 degrees?

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Here are some examples of 'cons', and see if you can figure out where the trick is.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

What can you say about the angles on opposite vertices of any cyclic quadrilateral? Working on the building blocks will give you insights that may help you to explain what is special about them.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.