Search by Topic

Resources tagged with Mathematical reasoning & proof similar to More Twisting and Turning:

Filter by: Content type:
Stage:
Challenge level:

There are 176 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

Stage: 3 Challenge Level:

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Go Forth and Generalise

Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

More Number Pyramids

Stage: 3 Challenge Level:

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Dicing with Numbers

Stage: 3 Challenge Level:

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

One O Five

Stage: 3 Challenge Level:

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Chocolate Maths

Stage: 3 Challenge Level:

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Concrete Wheel

Stage: 3 Challenge Level:

A huge wheel is rolling past your window. What do you see?

Convex Polygons

Stage: 3 Challenge Level:

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

9 Weights

Stage: 3 Challenge Level:

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Triangle Inequality

Stage: 3 Challenge Level:

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

Stage: 3 Challenge Level:

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Tourism

Stage: 3 Challenge Level:

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Unit Fractions

Stage: 3 Challenge Level:

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

Children at Large

Stage: 3 Challenge Level:

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

What Numbers Can We Make?

Stage: 3 Challenge Level:

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Konigsberg Plus

Stage: 3 Challenge Level:

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

What Numbers Can We Make Now?

Stage: 3 Challenge Level:

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Königsberg

Stage: 3 Challenge Level:

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

1 Step 2 Step

Stage: 3 Challenge Level:

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Even So

Stage: 3 Challenge Level:

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Happy Numbers

Stage: 3 Challenge Level:

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

Volume of a Pyramid and a Cone

Stage: 3

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Online

Stage: 2 and 3 Challenge Level:

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Clocked

Stage: 3 Challenge Level:

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

The Pillar of Chios

Stage: 3 Challenge Level:

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

Tessellating Hexagons

Stage: 3 Challenge Level:

Which hexagons tessellate?

Largest Product

Stage: 3 Challenge Level:

Which set of numbers that add to 10 have the largest product?

Shuffle Shriek

Stage: 3 Challenge Level:

Can you find all the 4-ball shuffles?

Sticky Numbers

Stage: 3 Challenge Level:

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Always the Same

Stage: 3 Challenge Level:

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

How Many Dice?

Stage: 3 Challenge Level:

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

Cross-country Race

Stage: 3 Challenge Level:

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

Stage: 3 Challenge Level:

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Disappearing Square

Stage: 3 Challenge Level:

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Eleven

Stage: 3 Challenge Level:

Replace each letter with a digit to make this addition correct.

Coins on a Plate

Stage: 3 Challenge Level:

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

Winning Team

Stage: 3 Challenge Level:

Nine cross country runners compete in a team competition in which there are three matches. If you were a judge how would you decide who would win?

Appearing Square

Stage: 3 Challenge Level:

Make an eight by eight square, the layout is the same as a chessboard. You can print out and use the square below. What is the area of the square? Divide the square in the way shown by the red dashed. . . .

Tri-colour

Stage: 3 Challenge Level:

Six points are arranged in space so that no three are collinear. How many line segments can be formed by joining the points in pairs?

A Chordingly

Stage: 3 Challenge Level:

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

Perfectly Square

Stage: 4 Challenge Level:

The sums of the squares of three related numbers is also a perfect square - can you explain why?

More Marbles

Stage: 3 Challenge Level:

I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?

Stage: 3 Challenge Level:

Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

Hockey

Stage: 3 Challenge Level:

After some matches were played, most of the information in the table containing the results of the games was accidentally deleted. What was the score in each match played?

Pyramids

Stage: 3 Challenge Level:

What are the missing numbers in the pyramids?

Cycle It

Stage: 3 Challenge Level:

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

Logic

Stage: 2 and 3

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

Thirty Nine, Seventy Five

Stage: 3 Challenge Level:

We have exactly 100 coins. There are five different values of coins. We have decided to buy a piece of computer software for 39.75. We have the correct money, not a penny more, not a penny less! Can. . . .

Top-heavy Pyramids

Stage: 3 Challenge Level:

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

There's a Limit

Stage: 4 and 5 Challenge Level:

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?