Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Nicely Similar:

Filter by: Content type:
Stage:
Challenge level:

There are 177 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

The Pillar of Chios

Stage: 3 Challenge Level:

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

Perfectly Square

Stage: 4 Challenge Level:

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Go Forth and Generalise

Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Dicing with Numbers

Stage: 3 Challenge Level:

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

Janine's Conjecture

Stage: 4 Challenge Level:

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Leonardo's Problem

Stage: 4 and 5 Challenge Level:

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Pythagoras Proofs

Stage: 4 Challenge Level:

Can you make sense of these three proofs of Pythagoras' Theorem?

Chocolate Maths

Stage: 3 Challenge Level:

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Children at Large

Stage: 3 Challenge Level:

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Always the Same

Stage: 3 Challenge Level:

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

One O Five

Stage: 3 Challenge Level:

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Mindreader

Stage: 3 Challenge Level:

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Multiplication Square

Stage: 3 Challenge Level:

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Always Perfect

Stage: 4 Challenge Level:

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Thirty Nine, Seventy Five

Stage: 3 Challenge Level:

We have exactly 100 coins. There are five different values of coins. We have decided to buy a piece of computer software for 39.75. We have the correct money, not a penny more, not a penny less! Can. . . .

Rhombus in Rectangle

Stage: 4 Challenge Level:

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Composite Notions

Stage: 4 Challenge Level:

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Reverse to Order

Stage: 3 Challenge Level:

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

More Mathematical Mysteries

Stage: 3 Challenge Level:

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

Areas and Ratios

Stage: 4 Challenge Level:

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

The Genie in the Jar

Stage: 3 Challenge Level:

This jar used to hold perfumed oil. It contained enough oil to fill granid silver bottles. Each bottle held enough to fill ozvik golden goblets and each goblet held enough to fill vaswik crystal. . . .

Unit Fractions

Stage: 3 Challenge Level:

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

Matter of Scale

Stage: 4 Challenge Level:

Prove Pythagoras Theorem using enlargements and scale factors.

Take Three from Five

Stage: 3 and 4 Challenge Level:

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Largest Product

Stage: 3 Challenge Level:

Which set of numbers that add to 10 have the largest product?

Ratty

Stage: 3 Challenge Level:

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

Paradoxes

Stage: 2 and 3

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

Number Rules - OK

Stage: 4 Challenge Level:

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Cross-country Race

Stage: 3 Challenge Level:

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

Picturing Pythagorean Triples

Stage: 4 and 5

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Concrete Wheel

Stage: 3 Challenge Level:

A huge wheel is rolling past your window. What do you see?

Sticky Numbers

Stage: 3 Challenge Level:

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Gift of Gems

Stage: 4 Challenge Level:

Four jewellers possessing respectively eight rubies, ten saphires, a hundred pearls and five diamonds, presented, each from his own stock, one apiece to the rest in token of regard; and they. . . .

Top-heavy Pyramids

Stage: 3 Challenge Level:

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Cyclic Quadrilaterals

Stage: 3 Challenge Level:

What can you say about the angles on opposite vertices of any cyclic quadrilateral? Working on the building blocks will give you insights that may help you to explain what is special about them.

Geometric Parabola

Stage: 4 Challenge Level:

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Cycle It

Stage: 3 Challenge Level:

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

Common Divisor

Stage: 4 Challenge Level:

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Appearing Square

Stage: 3 Challenge Level:

Make an eight by eight square, the layout is the same as a chessboard. You can print out and use the square below. What is the area of the square? Divide the square in the way shown by the red dashed. . . .

Mediant

Stage: 4 Challenge Level:

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

What Numbers Can We Make?

Stage: 3 Challenge Level:

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Pythagorean Triples I

Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Fitting In

Stage: 4 Challenge Level:

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

Pythagorean Triples II

Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Happy Numbers

Stage: 3 Challenge Level:

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

1 Step 2 Step

Stage: 3 Challenge Level:

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Tri-colour

Stage: 3 Challenge Level:

Six points are arranged in space so that no three are collinear. How many line segments can be formed by joining the points in pairs?

Konigsberg Plus

Stage: 3 Challenge Level:

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Marbles

Stage: 3 Challenge Level:

I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?

Coins on a Plate

Stage: 3 Challenge Level:

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.