Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Nicely Similar:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 177 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

The Pillar of Chios

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

problem icon

Perfectly Square

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The sums of the squares of three related numbers is also a perfect square - can you explain why?

problem icon

Always Perfect

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

problem icon

Common Divisor

Stage: 4 Challenge Level: Challenge Level:1

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

problem icon

Fitting In

Stage: 4 Challenge Level: Challenge Level:1

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

problem icon

A Chordingly

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

problem icon

Coins on a Plate

Stage: 3 Challenge Level: Challenge Level:1

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

problem icon

Zig Zag

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

problem icon

Chocolate Maths

Stage: 3 Challenge Level: Challenge Level:1

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

problem icon

Folding Squares

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The diagonal of a square intersects the line joining one of the unused corners to the midpoint of the opposite side. What do you notice about the line segments produced?

problem icon

Never Prime

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

problem icon

Matter of Scale

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Prove Pythagoras Theorem using enlargements and scale factors.

problem icon

Picturing Pythagorean Triples

Stage: 4 and 5

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

problem icon

Take Three from Five

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

problem icon

Janine's Conjecture

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

problem icon

Rotating Triangle

Stage: 3 and 4 Challenge Level: Challenge Level:1

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

problem icon

Appearing Square

Stage: 3 Challenge Level: Challenge Level:1

Make an eight by eight square, the layout is the same as a chessboard. You can print out and use the square below. What is the area of the square? Divide the square in the way shown by the red dashed. . . .

problem icon

Pythagorean Triples I

Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

problem icon

Composite Notions

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

problem icon

Salinon

Stage: 4 Challenge Level: Challenge Level:1

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

problem icon

Pythagorean Triples II

Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

problem icon

Rhombus in Rectangle

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

problem icon

Round and Round

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

problem icon

Multiplication Square

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

Always the Same

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

problem icon

Pythagoras Proofs

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you make sense of these three proofs of Pythagoras' Theorem?

problem icon

Areas and Ratios

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

problem icon

Geometric Parabola

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

problem icon

Rolling Coins

Stage: 4 Challenge Level: Challenge Level:1

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

problem icon

Take a Square II

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

What fractions can you divide the diagonal of a square into by simple folding?

problem icon

Mindreader

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

problem icon

What Numbers Can We Make?

Stage: 3 Challenge Level: Challenge Level:1

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

problem icon

L-triominoes

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

problem icon

Why 24?

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

problem icon

Whole Number Dynamics II

Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

problem icon

Whole Number Dynamics IV

Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

problem icon

A Knight's Journey

Stage: 4 and 5

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

problem icon

Happy Numbers

Stage: 3 Challenge Level: Challenge Level:1

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

problem icon

Whole Number Dynamics III

Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

problem icon

Whole Number Dynamics I

Stage: 4 and 5

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

problem icon

Postage

Stage: 4 Challenge Level: Challenge Level:1

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

problem icon

Kite in a Square

Stage: 4 Challenge Level: Challenge Level:1

Can you make sense of the three methods to work out the area of the kite in the square?

problem icon

A Biggy

Stage: 4 Challenge Level: Challenge Level:1

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

problem icon

Long Short

Stage: 4 Challenge Level: Challenge Level:1

A quadrilateral inscribed in a unit circle has sides of lengths s1, s2, s3 and s4 where s1 ≤ s2 ≤ s3 ≤ s4. Find a quadrilateral of this type for which s1= sqrt2 and show s1 cannot. . . .

problem icon

Mod 3

Stage: 4 Challenge Level: Challenge Level:1

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

problem icon

There's a Limit

Stage: 4 and 5 Challenge Level: Challenge Level:1

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

problem icon

Our Ages

Stage: 4 Challenge Level: Challenge Level:1

I am exactly n times my daughter's age. In m years I shall be exactly (n-1) times her age. In m2 years I shall be exactly (n-2) times her age. After that I shall never again be an exact multiple of. . . .

problem icon

What Numbers Can We Make Now?

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

problem icon

Sixational

Stage: 4 and 5 Challenge Level: Challenge Level:1

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

problem icon

Reverse to Order

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?