The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Show that if three prime numbers, all greater than 3, form an arithmetic progression then the common difference is divisible by 6. What if one of the terms is 3?

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

A introduction to how patterns can be deceiving, and what is and is not a proof.

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

I am exactly n times my daughter's age. In m years I shall be exactly (n-1) times her age. In m2 years I shall be exactly (n-2) times her age. After that I shall never again be an exact multiple of. . . .

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

If you think that mathematical proof is really clearcut and universal then you should read this article.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Four jewellers possessing respectively eight rubies, ten saphires, a hundred pearls and five diamonds, presented, each from his own stock, one apiece to the rest in token of regard; and they. . . .

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

A quadrilateral inscribed in a unit circle has sides of lengths s1, s2, s3 and s4 where s1 ≤ s2 ≤ s3 ≤ s4. Find a quadrilateral of this type for which s1= sqrt2 and show s1 cannot. . . .

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Can you rearrange the cards to make a series of correct mathematical statements?

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

What fractions can you divide the diagonal of a square into by simple folding?

Can you make sense of these three proofs of Pythagoras' Theorem?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.