Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Show that if three prime numbers, all greater than 3, form an arithmetic progression then the common difference is divisible by 6. What if one of the terms is 3?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Six points are arranged in space so that no three are collinear. How many line segments can be formed by joining the points in pairs?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

From a group of any 4 students in a class of 30, each has exchanged Christmas cards with the other three. Show that some students have exchanged cards with all the other students in the class. How. . . .

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Which set of numbers that add to 10 have the largest product?

A 'doodle' is a closed intersecting curve drawn without taking pencil from paper. Only two lines cross at each intersection or vertex (never 3), that is the vertex points must be 'double points' not. . . .

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

An article which gives an account of some properties of magic squares.

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

A quadrilateral inscribed in a unit circle has sides of lengths s1, s2, s3 and s4 where s1 ≤ s2 ≤ s3 ≤ s4. Find a quadrilateral of this type for which s1= sqrt2 and show s1 cannot. . . .

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

Prove that the shaded area of the semicircle is equal to the area of the inner circle.