Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Stretching Fractions:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 177 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

Happy Numbers

Stage: 3 Challenge Level: Challenge Level:1

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

problem icon

Russian Cubes

Stage: 4 Challenge Level: Challenge Level:1

How many different cubes can be painted with three blue faces and three red faces? A boy (using blue) and a girl (using red) paint the faces of a cube in turn so that the six faces are painted. . . .

problem icon

Dalmatians

Stage: 4 and 5 Challenge Level: Challenge Level:1

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

problem icon

Ordered Sums

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

problem icon

Postage

Stage: 4 Challenge Level: Challenge Level:1

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

problem icon

Triangle Incircle Iteration

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Start with any triangle T1 and its inscribed circle. Draw the triangle T2 which has its vertices at the points of contact between the triangle T1 and its incircle. Now keep repeating this. . . .

problem icon

Knight Defeated

Stage: 4 Challenge Level: Challenge Level:1

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .

problem icon

Doodles

Stage: 4 Challenge Level: Challenge Level:1

A 'doodle' is a closed intersecting curve drawn without taking pencil from paper. Only two lines cross at each intersection or vertex (never 3), that is the vertex points must be 'double points' not. . . .

problem icon

Cross-country Race

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

problem icon

Eleven

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Replace each letter with a digit to make this addition correct.

problem icon

Unit Interval

Stage: 4 and 5 Challenge Level: Challenge Level:1

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

problem icon

1 Step 2 Step

Stage: 3 Challenge Level: Challenge Level:1

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

problem icon

Pareq Exists

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

problem icon

Not Necessarily in That Order

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Baker, Cooper, Jones and Smith are four people whose occupations are teacher, welder, mechanic and programmer, but not necessarily in that order. What is each person’s occupation?

problem icon

Three Frogs

Stage: 4 Challenge Level: Challenge Level:1

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

problem icon

Logic

Stage: 2 and 3

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

problem icon

Thirty Nine, Seventy Five

Stage: 3 Challenge Level: Challenge Level:1

We have exactly 100 coins. There are five different values of coins. We have decided to buy a piece of computer software for 39.75. We have the correct money, not a penny more, not a penny less! Can. . . .

problem icon

Con Tricks

Stage: 3

Here are some examples of 'cons', and see if you can figure out where the trick is.

problem icon

More Mathematical Mysteries

Stage: 3 Challenge Level: Challenge Level:1

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

problem icon

A Chordingly

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

problem icon

Go Forth and Generalise

Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

problem icon

Online

Stage: 2 and 3 Challenge Level: Challenge Level:1

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

problem icon

To Prove or Not to Prove

Stage: 4 and 5

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

problem icon

Whole Number Dynamics III

Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

problem icon

Unit Fractions

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

problem icon

Ratty

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

problem icon

Picturing Pythagorean Triples

Stage: 4 and 5

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

problem icon

Magic Squares II

Stage: 4 and 5

An article which gives an account of some properties of magic squares.

problem icon

Yih or Luk Tsut K'i or Three Men's Morris

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

problem icon

Whole Number Dynamics V

Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

problem icon

Whole Number Dynamics II

Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

problem icon

Whole Number Dynamics I

Stage: 4 and 5

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

problem icon

Whole Number Dynamics IV

Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

problem icon

Impossible Sandwiches

Stage: 3, 4 and 5

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

problem icon

Sixational

Stage: 4 and 5 Challenge Level: Challenge Level:1

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

problem icon

Master Minding

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Your partner chooses two beads and places them side by side behind a screen. What is the minimum number of guesses you would need to be sure of guessing the two beads and their positions?

problem icon

Proof: A Brief Historical Survey

Stage: 4 and 5

If you think that mathematical proof is really clearcut and universal then you should read this article.

problem icon

Cycle It

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

problem icon

Paradoxes

Stage: 2 and 3

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

problem icon

N000ughty Thoughts

Stage: 4 Challenge Level: Challenge Level:1

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

problem icon

Mouhefanggai

Stage: 4

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

problem icon

Pattern of Islands

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

problem icon

Janine's Conjecture

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

problem icon

The Genie in the Jar

Stage: 3 Challenge Level: Challenge Level:1

This jar used to hold perfumed oil. It contained enough oil to fill granid silver bottles. Each bottle held enough to fill ozvik golden goblets and each goblet held enough to fill vaswik crystal. . . .

problem icon

Marbles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?

problem icon

Winning Team

Stage: 3 Challenge Level: Challenge Level:1

Nine cross country runners compete in a team competition in which there are three matches. If you were a judge how would you decide who would win?

problem icon

A Long Time at the Till

Stage: 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

problem icon

Power Mad!

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

problem icon

Road Maker

Stage: 4 and 5 Challenge Level: Challenge Level:1

Which of these roads will satisfy a Munchkin builder?

problem icon

Tree Graphs

Stage: 4 Challenge Level: Challenge Level:1

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree. . . .