Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

Baker, Cooper, Jones and Smith are four people whose occupations are teacher, welder, mechanic and programmer, but not necessarily in that order. What is each person’s occupation?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

After some matches were played, most of the information in the table containing the results of the games was accidentally deleted. What was the score in each match played?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

We have exactly 100 coins. There are five different values of coins. We have decided to buy a piece of computer software for 39.75. We have the correct money, not a penny more, not a penny less! Can. . . .

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Can you fit Ls together to make larger versions of themselves?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

What can you say about the angles on opposite vertices of any cyclic quadrilateral? Working on the building blocks will give you insights that may help you to explain what is special about them.

Here are some examples of 'cons', and see if you can figure out where the trick is.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.