Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

After some matches were played, most of the information in the table containing the results of the games was accidentally deleted. What was the score in each match played?

Here are three 'tricks' to amaze your friends. But the really clever trick is explaining to them why these 'tricks' are maths not magic. Like all good magicians, you should practice by trying. . . .

Baker, Cooper, Jones and Smith are four people whose occupations are teacher, welder, mechanic and programmer, but not necessarily in that order. What is each person’s occupation?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Which set of numbers that add to 10 have the largest product?

Choose any three by three square of dates on a calendar page. Circle any number on the top row, put a line through the other numbers that are in the same row and column as your circled number. Repeat. . . .

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Show that if three prime numbers, all greater than 3, form an arithmetic progression then the common difference is divisible by 6. What if one of the terms is 3?

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

We have exactly 100 coins. There are five different values of coins. We have decided to buy a piece of computer software for 39.75. We have the correct money, not a penny more, not a penny less! Can. . . .

Here are some examples of 'cons', and see if you can figure out where the trick is.

This jar used to hold perfumed oil. It contained enough oil to fill granid silver bottles. Each bottle held enough to fill ozvik golden goblets and each goblet held enough to fill vaswik crystal. . . .

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?