Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Six points are arranged in space so that no three are collinear. How many line segments can be formed by joining the points in pairs?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Baker, Cooper, Jones and Smith are four people whose occupations are teacher, welder, mechanic and programmer, but not necessarily in that order. What is each person’s occupation?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

After some matches were played, most of the information in the table containing the results of the games was accidentally deleted. What was the score in each match played?

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

This is the second of two articles and discusses problems relating to the curvature of space, shortest distances on surfaces, triangulations of surfaces and representation by graphs.

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

We have exactly 100 coins. There are five different values of coins. We have decided to buy a piece of computer software for 39.75. We have the correct money, not a penny more, not a penny less! Can. . . .

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

An article which gives an account of some properties of magic squares.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

This jar used to hold perfumed oil. It contained enough oil to fill granid silver bottles. Each bottle held enough to fill ozvik golden goblets and each goblet held enough to fill vaswik crystal. . . .

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

Four jewellers share their stock. Can you work out the relative values of their gems?