Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Magic Squares for Special Occasions:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 175 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

Always the Same

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

problem icon

Eleven

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Replace each letter with a digit to make this addition correct.

problem icon

Tis Unique

Stage: 3 Challenge Level: Challenge Level:1

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

problem icon

Aba

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

problem icon

Top-heavy Pyramids

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

problem icon

Pyramids

Stage: 3 Challenge Level: Challenge Level:1

What are the missing numbers in the pyramids?

problem icon

Is it Magic or Is it Maths?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Here are three 'tricks' to amaze your friends. But the really clever trick is explaining to them why these 'tricks' are maths not magic. Like all good magicians, you should practice by trying. . . .

problem icon

More Mathematical Mysteries

Stage: 3 Challenge Level: Challenge Level:1

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

problem icon

Sticky Numbers

Stage: 3 Challenge Level: Challenge Level:1

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

problem icon

Leonardo's Problem

Stage: 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

problem icon

Calendar Capers

Stage: 3 Challenge Level: Challenge Level:1

Choose any three by three square of dates on a calendar page...

problem icon

A Long Time at the Till

Stage: 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

problem icon

9 Weights

Stage: 3 Challenge Level: Challenge Level:1

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

problem icon

Chocolate Maths

Stage: 3 Challenge Level: Challenge Level:1

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

problem icon

Advent Calendar 2011 - Secondary

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

problem icon

Janine's Conjecture

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

problem icon

Cycle It

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

problem icon

Mediant

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

problem icon

Composite Notions

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

problem icon

Unit Interval

Stage: 4 and 5 Challenge Level: Challenge Level:1

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

problem icon

Postage

Stage: 4 Challenge Level: Challenge Level:1

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

problem icon

The Great Weights Puzzle

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

problem icon

Pythagoras Proofs

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you make sense of these three proofs of Pythagoras' Theorem?

problem icon

Clocked

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

problem icon

AMGM

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you use the diagram to prove the AM-GM inequality?

problem icon

Multiplication Square

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

DOTS Division

Stage: 4 Challenge Level: Challenge Level:1

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

problem icon

Hockey

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

After some matches were played, most of the information in the table containing the results of the games was accidentally deleted. What was the score in each match played?

problem icon

Mindreader

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

problem icon

Never Prime

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

problem icon

Ratty

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

problem icon

Cyclic Quadrilaterals

Stage: 3 Challenge Level: Challenge Level:1

What can you say about the angles on opposite vertices of any cyclic quadrilateral? Working on the building blocks will give you insights that may help you to explain what is special about them.

problem icon

Sixational

Stage: 4 and 5 Challenge Level: Challenge Level:1

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

problem icon

Always Perfect

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

problem icon

Angle Trisection

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

problem icon

Pythagorean Triples I

Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

problem icon

Pythagorean Triples II

Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

problem icon

The Pillar of Chios

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

problem icon

Pareq Exists

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

problem icon

A Biggy

Stage: 4 Challenge Level: Challenge Level:1

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

problem icon

Knight Defeated

Stage: 4 Challenge Level: Challenge Level:1

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .

problem icon

Diophantine N-tuples

Stage: 4 Challenge Level: Challenge Level:1

Can you explain why a sequence of operations always gives you perfect squares?

problem icon

Three Frogs

Stage: 4 Challenge Level: Challenge Level:1

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

problem icon

Logic

Stage: 2 and 3

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

problem icon

Gift of Gems

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Four jewellers share their stock. Can you work out the relative values of their gems?

problem icon

Natural Sum

Stage: 4 Challenge Level: Challenge Level:1

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

problem icon

L-triominoes

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

problem icon

Square Mean

Stage: 4 Challenge Level: Challenge Level:1

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

problem icon

Whole Number Dynamics I

Stage: 4 and 5

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

problem icon

Long Short

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?