Which set of numbers that add to 10 have the largest product?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

Choose any three by three square of dates on a calendar page...

Here are three 'tricks' to amaze your friends. But the really clever trick is explaining to them why these 'tricks' are maths not magic. Like all good magicians, you should practice by trying. . . .

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to do. . . .

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

Are these statements always true, sometimes true or never true?

Are these statements always true, sometimes true or never true?

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

What can you say about the angles on opposite vertices of any cyclic quadrilateral? Working on the building blocks will give you insights that may help you to explain what is special about them.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.