Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

Six points are arranged in space so that no three are collinear. How many line segments can be formed by joining the points in pairs?

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

From a group of any 4 students in a class of 30, each has exchanged Christmas cards with the other three. Show that some students have exchanged cards with all the other students in the class. How. . . .

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

Nine cross country runners compete in a team competition in which there are three matches. If you were a judge how would you decide who would win?

Here are some examples of 'cons', and see if you can figure out where the trick is.

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

A introduction to how patterns can be deceiving, and what is and is not a proof.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

After some matches were played, most of the information in the table containing the results of the games was accidentally deleted. What was the score in each match played?

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

Can you fit Ls together to make larger versions of themselves?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

What can you say about the angles on opposite vertices of any cyclic quadrilateral? Working on the building blocks will give you insights that may help you to explain what is special about them.

I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Use your logical reasoning to work out how many cows and how many sheep there are in each field.