This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

This is the second of two articles and discusses problems relating to the curvature of space, shortest distances on surfaces, triangulations of surfaces and representation by graphs.

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This is the second article on right-angled triangles whose edge lengths are whole numbers.

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

What can you say about the angles on opposite vertices of any cyclic quadrilateral? Working on the building blocks will give you insights that may help you to explain what is special about them.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

A introduction to how patterns can be deceiving, and what is and is not a proof.

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Here are some examples of 'cons', and see if you can figure out where the trick is.

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Three teams have each played two matches. The table gives the total number points and goals scored for and against each team. Fill in the table and find the scores in the three matches.

Make an eight by eight square, the layout is the same as a chessboard. You can print out and use the square below. What is the area of the square? Divide the square in the way shown by the red dashed. . . .

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .