A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

After some matches were played, most of the information in the table containing the results of the games was accidentally deleted. What was the score in each match played?

Baker, Cooper, Jones and Smith are four people whose occupations are teacher, welder, mechanic and programmer, but not necessarily in that order. What is each person’s occupation?

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Three teams have each played two matches. The table gives the total number points and goals scored for and against each team. Fill in the table and find the scores in the three matches.

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

Six points are arranged in space so that no three are collinear. How many line segments can be formed by joining the points in pairs?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

Nine cross country runners compete in a team competition in which there are three matches. If you were a judge how would you decide who would win?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Here are some examples of 'cons', and see if you can figure out where the trick is.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?

From a group of any 4 students in a class of 30, each has exchanged Christmas cards with the other three. Show that some students have exchanged cards with all the other students in the class. How. . . .

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to do. . . .

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

Your partner chooses two beads and places them side by side behind a screen. What is the minimum number of guesses you would need to be sure of guessing the two beads and their positions?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Choose any three by three square of dates on a calendar page. Circle any number on the top row, put a line through the other numbers that are in the same row and column as your circled number. Repeat. . . .

What can you say about the angles on opposite vertices of any cyclic quadrilateral? Working on the building blocks will give you insights that may help you to explain what is special about them.

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Here are three 'tricks' to amaze your friends. But the really clever trick is explaining to them why these 'tricks' are maths not magic. Like all good magicians, you should practice by trying. . . .