Look at what happens when you take a number, square it and subtract your answer. What kind of number do you get? Can you prove it?

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

What can you say about the angles on opposite vertices of any cyclic quadrilateral? Working on the building blocks will give you insights that may help you to explain what is special about them.

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Which set of numbers that add to 10 have the largest product?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Are these statements always true, sometimes true or never true?

Are these statements always true, sometimes true or never true?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

A introduction to how patterns can be deceiving, and what is and is not a proof.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Here are some examples of 'cons', and see if you can figure out where the trick is.

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?