The number 27 is special because it is three times the sum of its digits 27 = 3 (2 + 7). Find some two digit numbers that are SEVEN times the sum of their digits (seven-up numbers)?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

32 x 38 = 30 x 40 + 2 x 8; 34 x 36 = 30 x 40 + 4 x 6; 56 x 54 = 50 x 60 + 6 x 4; 73 x 77 = 70 x 80 + 3 x 7 Verify and generalise if possible.

Think of a two digit number, reverse the digits, and add the numbers together. Something special happens...

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

This activity involves rounding four-digit numbers to the nearest thousand.

This article, written for teachers, looks at the different kinds of recordings encountered in Primary Mathematics lessons and the importance of not jumping to conclusions!

The number 3723(in base 10) is written as 123 in another base. What is that base?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Can you show that 1^99 + 2^99 + 3^99 + 4^99 + 5^99 is divisible by 5?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Think of any three-digit number. Repeat the digits. The 6-digit number that you end up with is divisible by 91. Is this a coincidence?

Choose two digits and arrange them to make two double-digit numbers. Now add your double-digit numbers. Now add your single digit numbers. Divide your double-digit answer by your single-digit answer. . . .

There are nasty versions of this dice game but we'll start with the nice ones...

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

four strategy dice games to consolidate pupils' understanding of rounding.

What happens when you round these three-digit numbers to the nearest 100?

What happens when you round these numbers to the nearest whole number?

Can you replace the letters with numbers? Is there only one solution in each case?

Consider all of the five digit numbers which we can form using only the digits 2, 4, 6 and 8. If these numbers are arranged in ascending order, what is the 512th number?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Amazing as it may seem the three fives remaining in the following `skeleton' are sufficient to reconstruct the entire long division sum.

Take the numbers 1, 2, 3, 4 and 5 and imagine them written down in every possible order to give 5 digit numbers. Find the sum of the resulting numbers.

There are two forms of counting on Vuvv - Zios count in base 3 and Zepts count in base 7. One day four of these creatures, two Zios and two Zepts, sat on the summit of a hill to count the legs of. . . .

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

How many six digit numbers are there which DO NOT contain a 5?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

This is a game in which your counters move in a spiral round the snail's shell. It is about understanding tens and units.

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Who said that adding, subtracting, multiplying and dividing couldn't be fun?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Have a go at balancing this equation. Can you find different ways of doing it?

Dicey Operations for an adult and child. Can you get close to 1000 than your partner?

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your oponent.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Can you work out some different ways to balance this equation?