Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Choose two digits and arrange them to make two double-digit numbers. Now add your double-digit numbers. Now add your single digit numbers. Divide your double-digit answer by your single-digit answer. . . .

Each child in Class 3 took four numbers out of the bag. Who had made the highest even number?

Can you create a Latin Square from multiples of a six digit number?

Consider all of the five digit numbers which we can form using only the digits 2, 4, 6 and 8. If these numbers are arranged in ascending order, what is the 512th number?

There are two forms of counting on Vuvv - Zios count in base 3 and Zepts count in base 7. One day four of these creatures, two Zios and two Zepts, sat on the summit of a hill to count the legs of. . . .

32 x 38 = 30 x 40 + 2 x 8; 34 x 36 = 30 x 40 + 4 x 6; 56 x 54 = 50 x 60 + 6 x 4; 73 x 77 = 70 x 80 + 3 x 7 Verify and generalise if possible.

This is a game in which your counters move in a spiral round the snail's shell. It is about understanding tens and units.

There are six numbers written in five different scripts. Can you sort out which is which?

The number 3723(in base 10) is written as 123 in another base. What is that base?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?

How many six digit numbers are there which DO NOT contain a 5?

Take the numbers 1, 2, 3, 4 and 5 and imagine them written down in every possible order to give 5 digit numbers. Find the sum of the resulting numbers.

How many positive integers less than or equal to 4000 can be written down without using the digits 7, 8 or 9?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

You have two sets of the digits 0 – 9. Can you arrange these in the five boxes to make four-digit numbers as close to the target numbers as possible?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

When asked how old she was, the teacher replied: My age in years is not prime but odd and when reversed and added to my age you have a perfect square...

Number problems for inquiring primary learners.

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Using balancing scales what is the least number of weights needed to weigh all integer masses from 1 to 1000? Placing some of the weights in the same pan as the object how many are needed?

A school song book contains 700 songs. The numbers of the songs are displayed by combining special small single-digit boards. What is the minimum number of small boards that is needed?

Number problems at primary level that may require determination.

Four strategy dice games to consolidate pupils' understanding of rounding.

Exploring the structure of a number square: how quickly can you put the number tiles in the right place on the grid?

This activity involves rounding four-digit numbers to the nearest thousand.

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Watch our videos of multiplication methods that you may not have met before. Can you make sense of them?

The number 27 is special because it is three times the sum of its digits 27 = 3 (2 + 7). Find some two digit numbers that are SEVEN times the sum of their digits (seven-up numbers)?

Number problems at primary level that require careful consideration.

Number problems at primary level to work on with others.

Have a go at balancing this equation. Can you find different ways of doing it?

What happens when you round these three-digit numbers to the nearest 100?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Think of a two digit number, reverse the digits, and add the numbers together. Something special happens...

Explore the relationship between simple linear functions and their graphs.

Nowadays the calculator is very familiar to many of us. What did people do to save time working out more difficult problems before the calculator existed?

What happens when you round these numbers to the nearest whole number?