Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Which rational numbers cannot be written in the form x + 1/(y + 1/z) where x, y and z are integers?

Find the maximum value of 1/p + 1/q + 1/r where this sum is less than 1 and p, q, and r are positive integers.

The challenge is to find the values of the variables if you are to solve this Sudoku.

Attach weights of 1, 2, 4, and 8 units to the four attachment points on the bar. Move the bar from side to side until you find a balance point. Is it possible to predict that position?

Our first weekly challenge. We kick off with a challenge concerning inequalities.

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

Two cubes, each with integral side lengths, have a combined volume equal to the total of the lengths of their edges. How big are the cubes? [If you find a result by 'trial and error' you'll need to. . . .

Take a few whole numbers away from a triangle number. If you know the mean of the remaining numbers can you find the triangle number and which numbers were removed?

Three rods of different lengths form three sides of an enclosure with right angles between them. What arrangement maximises the area

What fractions can you find between the square roots of 56 and 58?

A bag contains 12 marbles. There are more red than green but green and blue together exceed the reds. The total of yellow and green marbles is more than the total of red and blue. How many of. . . .

According to Plutarch, the Greeks found all the rectangles with integer sides, whose areas are equal to their perimeters. Can you find them? What rectangular boxes, with integer sides, have. . . .

By inscribing a circle in a square and then a square in a circle find an approximation to pi. By using a hexagon, can you improve on the approximation?

Christmas trees are planted in a rectangular array of 10 rows and 12 columns. The farmer chooses the shortest tree in each of the columns... the tallest tree from each of the rows ... Which is. . . .