This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Solve the equations to identify the clue numbers in this Sudoku problem.

You need to find the values of the stars before you can apply normal Sudoku rules.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

The challenge is to find the values of the variables if you are to solve this Sudoku.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

There are lots of different methods to find out what the shapes are worth - how many can you find?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Can you work out how many of each kind of pencil this student bought?

Can you find the values at the vertices when you know the values on the edges?

When asked how old she was, the teacher replied: My age in years is not prime but odd and when reversed and added to my age you have a perfect square...

Add up all 5 equations given below. What do you notice? Solve the system and find the values of a, b, c , d and e. b + c + d + e = 4 a + c + d + e = 5 a + b + d + e = 1 a + b + c + e = 2 a + b. . . .

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.