A collection of our favourite pictorial problems, one for each day of Advent.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Re-arrange the pieces of the puzzle to form a rectangle and then to form an equilateral triangle. Calculate the angles and lengths.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Match pairs of cards so that they have equivalent ratios.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Use Excel to explore multiplication of fractions.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

A metal puzzle which led to some mathematical questions.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

A tool for generating random integers.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Square It game for an adult and child. Can you come up with a way of always winning this game?

Can you beat the computer in the challenging strategy game?

To avoid losing think of another very well known game where the patterns of play are similar.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Use an Excel spreadsheet to explore long multiplication.

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Use an interactive Excel spreadsheet to investigate factors and multiples.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

A group of interactive resources to support work on percentages Key Stage 4.

Use Excel to investigate the effect of translations around a number grid.

Use an interactive Excel spreadsheet to explore number in this exciting game!

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Use Excel to practise adding and subtracting fractions.

An Excel spreadsheet with an investigation.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Have you seen this way of doing multiplication ?

How can we solve equations like 13x + 29y = 42 or 2x +4y = 13 with the solutions x and y being integers? Read this article to find out.

Can you set the logic gates so that the number of bulbs which are on is the same as the number of switches which are on?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

A spherical balloon lies inside a wire frame. How much do you need to deflate it to remove it from the frame if it remains a sphere?

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.