Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Can you work out which spinners were used to generate the frequency charts?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

A tool for generating random integers.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

Here is a chance to play a fractions version of the classic Countdown Game.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

To avoid losing think of another very well known game where the patterns of play are similar.

Four cards are shuffled and placed into two piles of two. Starting with the first pile of cards - turn a card over... You win if all your cards end up in the trays before you run out of cards in. . . .

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

Can you beat the computer in the challenging strategy game?

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Match the cards of the same value.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

How good are you at finding the formula for a number pattern ?

A metal puzzle which led to some mathematical questions.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A spherical balloon lies inside a wire frame. How much do you need to deflate it to remove it from the frame if it remains a sphere?

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

This set of resources for teachers offers interactive environments to support work on graphical interpretation at Key Stage 4.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

What is the quickest route across a ploughed field when your speed around the edge is greater?

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Six circles around a central circle make a flower. Watch the flower as you change the radii in this circle packing. Prove that with the given ratios of the radii the petals touch and fit perfectly.

This resource contains interactive problems to support work on number sequences at Key Stage 4.

A weekly challenge concerning prime numbers.

The classic vector racing game brought to a screen near you.

A game in which players take it in turns to choose a number. Can you block your opponent?

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Give your further pure mathematics skills a workout with this interactive and reusable set of activities.

Take any parallelogram and draw squares on the sides of the parallelogram. What can you prove about the quadrilateral formed by joining the centres of these squares?

Practise your skills of proportional reasoning with this interactive haemocytometer.

Can you locate these values on this interactive logarithmic scale?