Take any parallelogram and draw squares on the sides of the parallelogram. What can you prove about the quadrilateral formed by joining the centres of these squares?

A tool for generating random integers.

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

A collection of our favourite pictorial problems, one for each day of Advent.

This resources contains a series of interactivities designed to support work on transformations at Key Stage 4.

How can we solve equations like 13x + 29y = 42 or 2x +4y = 13 with the solutions x and y being integers? Read this article to find out.

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Use Excel to explore multiplication of fractions.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

How good are you at finding the formula for a number pattern ?

This resource contains interactive problems to support work on number sequences at Key Stage 4.

Use Excel to investigate the effect of translations around a number grid.

Here is a chance to play a fractions version of the classic Countdown Game.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Match pairs of cards so that they have equivalent ratios.

Use an Excel spreadsheet to explore long multiplication.

An Excel spreadsheet with an investigation.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use Excel to practise adding and subtracting fractions.

The classic vector racing game brought to a screen near you.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an interactive Excel spreadsheet to explore number in this exciting game!

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

A metal puzzle which led to some mathematical questions.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Square It game for an adult and child. Can you come up with a way of always winning this game?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Can you locate these values on this interactive logarithmic scale?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

A point P is selected anywhere inside an equilateral triangle. What can you say about the sum of the perpendicular distances from P to the sides of the triangle? Can you prove your conjecture?

To avoid losing think of another very well known game where the patterns of play are similar.

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A spherical balloon lies inside a wire frame. How much do you need to deflate it to remove it from the frame if it remains a sphere?

Six circles around a central circle make a flower. Watch the flower as you change the radii in this circle packing. Prove that with the given ratios of the radii the petals touch and fit perfectly.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you beat the computer in the challenging strategy game?

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?