Cellular is an animation that helps you make geometric sequences composed of square cells.

Use this interactivity to sort out the steps of the proof of the formula for the sum of an arithmetic series. The 'thermometer' will tell you how you are doing

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

A weekly challenge concerning prime numbers.

Can you beat the computer in the challenging strategy game?

Take any parallelogram and draw squares on the sides of the parallelogram. What can you prove about the quadrilateral formed by joining the centres of these squares?

To avoid losing think of another very well known game where the patterns of play are similar.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Use Excel to explore multiplication of fractions.

Square It game for an adult and child. Can you come up with a way of always winning this game?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Re-arrange the pieces of the puzzle to form a rectangle and then to form an equilateral triangle. Calculate the angles and lengths.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

The classic vector racing game brought to a screen near you.

Can you work through these direct proofs, using our interactive proof sorters?

Can you locate these values on this interactive logarithmic scale?

Here is a chance to play a fractions version of the classic Countdown Game.

A collection of our favourite pictorial problems, one for each day of Advent.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

A tool for generating random integers.

This resource contains interactive problems to support work on number sequences at Key Stage 4.

A metal puzzle which led to some mathematical questions.

A spherical balloon lies inside a wire frame. How much do you need to deflate it to remove it from the frame if it remains a sphere?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Discover a handy way to describe reorderings and solve our anagram in the process.

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

A collection of resources to support work on Factors and Multiples at Secondary level.

An Excel spreadsheet with an investigation.

How can we solve equations like 13x + 29y = 42 or 2x +4y = 13 with the solutions x and y being integers? Read this article to find out.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

An environment that enables you to investigate tessellations of regular polygons

Use an Excel spreadsheet to explore long multiplication.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an interactive Excel spreadsheet to explore number in this exciting game!