This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

To avoid losing think of another very well known game where the patterns of play are similar.

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Match pairs of cards so that they have equivalent ratios.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

This resource contains interactive problems to support work on number sequences at Key Stage 4.

Use Excel to explore multiplication of fractions.

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Can you beat the computer in the challenging strategy game?

Match the cards of the same value.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use Excel to investigate the effect of translations around a number grid.

Use an Excel spreadsheet to explore long multiplication.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

Use Excel to practise adding and subtracting fractions.

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

An Excel spreadsheet with an investigation.

How can we solve equations like 13x + 29y = 42 or 2x +4y = 13 with the solutions x and y being integers? Read this article to find out.

Can you set the logic gates so that the number of bulbs which are on is the same as the number of switches which are on?

Can you locate these values on this interactive logarithmic scale?

How good are you at finding the formula for a number pattern ?

The shortest path between any two points on a snooker table is the straight line between them but what if the ball must bounce off one wall, or 2 walls, or 3 walls?

A metal puzzle which led to some mathematical questions.

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

How do scores on dice and factors of polynomials relate to each other?

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .