There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

This resources contains a series of interactivities designed to support work on transformations at Key Stage 4.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

Take any parallelogram and draw squares on the sides of the parallelogram. What can you prove about the quadrilateral formed by joining the centres of these squares?

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Match pairs of cards so that they have equivalent ratios.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Use Excel to explore multiplication of fractions.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Use Excel to investigate the effect of translations around a number grid.

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

An Excel spreadsheet with an investigation.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Here is a chance to play a fractions version of the classic Countdown Game.

A collection of our favourite pictorial problems, one for each day of Advent.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

A tool for generating random integers.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use Excel to practise adding and subtracting fractions.

Use an Excel spreadsheet to explore long multiplication.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Can you beat the computer in the challenging strategy game?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Rotate a copy of the trapezium about the centre of the longest side of the blue triangle to make a square. Find the area of the square and then derive a formula for the area of the trapezium.

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

This resource contains interactive problems to support work on number sequences at Key Stage 4.

A metal puzzle which led to some mathematical questions.

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

The classic vector racing game brought to a screen near you.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

To avoid losing think of another very well known game where the patterns of play are similar.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Square It game for an adult and child. Can you come up with a way of always winning this game?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?