Explore displacement/time and velocity/time graphs with this mouse motion sensor.

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Which dilutions can you make using 10ml pipettes and 100ml measuring cylinders?

Can you fill in the mixed up numbers in this dilution calculation?

Can you break down this conversion process into logical steps?

Which exact dilution ratios can you make using only 2 dilutions?

Which dilutions can you make using only 10ml pipettes?

The shortest path between any two points on a snooker table is the straight line between them but what if the ball must bounce off one wall, or 2 walls, or 3 walls?

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

How do scores on dice and factors of polynomials relate to each other?

Practise your skills of proportional reasoning with this interactive haemocytometer.

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Can you locate these values on this interactive logarithmic scale?

Give your further pure mathematics skills a workout with this interactive and reusable set of activities.

Mathmo is a revision tool for post-16 mathematics. It's great installed as a smartphone app, but it works well in pads and desktops and notebooks too. Give yourself a mathematical workout!

A weekly challenge concerning prime numbers.

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

How good are you at finding the formula for a number pattern ?

Can you set the logic gates so that the number of bulbs which are on is the same as the number of switches which are on?

Practice your skills of measurement and estimation using this interactive measurement tool based around fascinating images from biology.

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Six circles around a central circle make a flower. Watch the flower as you change the radii in this circle packing. Prove that with the given ratios of the radii the petals touch and fit perfectly.

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

A spherical balloon lies inside a wire frame. How much do you need to deflate it to remove it from the frame if it remains a sphere?

With red and blue beads on a circular wire; 'put a red bead between any two of the same colour and a blue between different colours then remove the original beads'. Keep repeating this. What happens?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Use Excel to explore multiplication of fractions.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

To avoid losing think of another very well known game where the patterns of play are similar.

A collection of our favourite pictorial problems, one for each day of Advent.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Can you beat the computer in the challenging strategy game?

Here is a chance to play a fractions version of the classic Countdown Game.

Can you work through these direct proofs, using our interactive proof sorters?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

The classic vector racing game brought to a screen near you.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Match the cards of the same value.

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.