Re-arrange the pieces of the puzzle to form a rectangle and then to form an equilateral triangle. Calculate the angles and lengths.

A metal puzzle which led to some mathematical questions.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

A spherical balloon lies inside a wire frame. How much do you need to deflate it to remove it from the frame if it remains a sphere?

Use Excel to explore multiplication of fractions.

Match pairs of cards so that they have equivalent ratios.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

An environment that enables you to investigate tessellations of regular polygons

Can you beat the computer in the challenging strategy game?

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Discover a handy way to describe reorderings and solve our anagram in the process.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

A weekly challenge concerning prime numbers.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

The classic vector racing game brought to a screen near you.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

A tool for generating random integers.

A collection of our favourite pictorial problems, one for each day of Advent.

How good are you at finding the formula for a number pattern ?

This resource contains interactive problems to support work on number sequences at Key Stage 4.

Can you locate these values on this interactive logarithmic scale?

Here is a chance to play a fractions version of the classic Countdown Game.

Match the cards of the same value.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Use Excel to investigate the effect of translations around a number grid.

An Excel spreadsheet with an investigation.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

Use Excel to practise adding and subtracting fractions.

Use an interactive Excel spreadsheet to investigate factors and multiples.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an Excel spreadsheet to explore long multiplication.

Use an interactive Excel spreadsheet to explore number in this exciting game!

A group of interactive resources to support work on percentages Key Stage 4.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

A collection of resources to support work on Factors and Multiples at Secondary level.

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

How can we solve equations like 13x + 29y = 42 or 2x +4y = 13 with the solutions x and y being integers? Read this article to find out.

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Six circles around a central circle make a flower. Watch the flower as you change the radii in this circle packing. Prove that with the given ratios of the radii the petals touch and fit perfectly.

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.