There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

To avoid losing think of another very well known game where the patterns of play are similar.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Match pairs of cards so that they have equivalent ratios.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

An environment that enables you to investigate tessellations of regular polygons

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

The classic vector racing game brought to a screen near you.

A collection of our favourite pictorial problems, one for each day of Advent.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Use Excel to explore multiplication of fractions.

Can you beat the computer in the challenging strategy game?

Match the cards of the same value.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Use an interactive Excel spreadsheet to explore number in this exciting game!

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Use Excel to investigate the effect of translations around a number grid.

Use Excel to practise adding and subtracting fractions.

Use an Excel spreadsheet to explore long multiplication.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

An Excel spreadsheet with an investigation.

Use an interactive Excel spreadsheet to investigate factors and multiples.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

Six circles around a central circle make a flower. Watch the flower as you change the radii in this circle packing. Prove that with the given ratios of the radii the petals touch and fit perfectly.

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

A spherical balloon lies inside a wire frame. How much do you need to deflate it to remove it from the frame if it remains a sphere?

This set of resources for teachers offers interactive environments to support work on graphical interpretation at Key Stage 4.

Can you set the logic gates so that the number of bulbs which are on is the same as the number of switches which are on?

A weekly challenge concerning prime numbers.

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.