This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

To avoid losing think of another very well known game where the patterns of play are similar.

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Match pairs of cards so that they have equivalent ratios.

A collection of our favourite pictorial problems, one for each day of Advent.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Match the cards of the same value.

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Here is a chance to play a fractions version of the classic Countdown Game.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

An Excel spreadsheet with an investigation.

Use an Excel spreadsheet to explore long multiplication.

Use Excel to practise adding and subtracting fractions.

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

A weekly challenge concerning prime numbers.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Use an interactive Excel spreadsheet to investigate factors and multiples.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Can you beat the computer in the challenging strategy game?

A metal puzzle which led to some mathematical questions.

This resource contains interactive problems to support work on number sequences at Key Stage 4.

Can you locate these values on this interactive logarithmic scale?

A tool for generating random integers.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

A collection of resources to support work on Factors and Multiples at Secondary level.

Six circles around a central circle make a flower. Watch the flower as you change the radii in this circle packing. Prove that with the given ratios of the radii the petals touch and fit perfectly.

A spherical balloon lies inside a wire frame. How much do you need to deflate it to remove it from the frame if it remains a sphere?

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use Excel to explore multiplication of fractions.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

The classic vector racing game brought to a screen near you.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .