This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Use this interactivity to sort out the steps of the proof of the formula for the sum of an arithmetic series. The 'thermometer' will tell you how you are doing

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

Can you work through these direct proofs, using our interactive proof sorters?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

A collection of resources to support work on Factors and Multiples at Secondary level.

What is the quickest route across a ploughed field when your speed around the edge is greater?

To avoid losing think of another very well known game where the patterns of play are similar.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

A weekly challenge concerning prime numbers.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Six circles around a central circle make a flower. Watch the flower as you change the radii in this circle packing. Prove that with the given ratios of the radii the petals touch and fit perfectly.

With red and blue beads on a circular wire; 'put a red bead between any two of the same colour and a blue between different colours then remove the original beads'. Keep repeating this. What happens?

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Prove Pythagoras' Theorem using enlargements and scale factors.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Use Excel to explore multiplication of fractions.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

A spherical balloon lies inside a wire frame. How much do you need to deflate it to remove it from the frame if it remains a sphere?

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Can you locate these values on this interactive logarithmic scale?

Mathmo is a revision tool for post-16 mathematics. It's great installed as a smartphone app, but it works well in pads and desktops and notebooks too. Give yourself a mathematical workout!

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

A tool for generating random integers.

A collection of our favourite pictorial problems, one for each day of Advent.

Practise your skills of proportional reasoning with this interactive haemocytometer.

Cellular is an animation that helps you make geometric sequences composed of square cells.

Here is a chance to play a fractions version of the classic Countdown Game.

This resource contains interactive problems to support work on number sequences at Key Stage 4.

How good are you at finding the formula for a number pattern ?

Can you beat the computer in the challenging strategy game?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Take any parallelogram and draw squares on the sides of the parallelogram. What can you prove about the quadrilateral formed by joining the centres of these squares?

Can you set the logic gates so that the number of bulbs which are on is the same as the number of switches which are on?

A metal puzzle which led to some mathematical questions.