Can you beat the computer in the challenging strategy game?

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Six circles around a central circle make a flower. Watch the flower as you change the radii in this circle packing. Prove that with the given ratios of the radii the petals touch and fit perfectly.

A point P is selected anywhere inside an equilateral triangle. What can you say about the sum of the perpendicular distances from P to the sides of the triangle? Can you prove your conjecture?

To avoid losing think of another very well known game where the patterns of play are similar.

Can you locate these values on this interactive logarithmic scale?

How good are you at finding the formula for a number pattern ?

Discover a handy way to describe reorderings and solve our anagram in the process.

An environment that enables you to investigate tessellations of regular polygons

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Match pairs of cards so that they have equivalent ratios.

A metal puzzle which led to some mathematical questions.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

This resource contains interactive problems to support work on number sequences at Key Stage 4.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Use Excel to explore multiplication of fractions.

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Can you work through these direct proofs, using our interactive proof sorters?

Re-arrange the pieces of the puzzle to form a rectangle and then to form an equilateral triangle. Calculate the angles and lengths.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A spherical balloon lies inside a wire frame. How much do you need to deflate it to remove it from the frame if it remains a sphere?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

How can we solve equations like 13x + 29y = 42 or 2x +4y = 13 with the solutions x and y being integers? Read this article to find out.

A weekly challenge concerning prime numbers.

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

An Excel spreadsheet with an investigation.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use Excel to practise adding and subtracting fractions.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Take any parallelogram and draw squares on the sides of the parallelogram. What can you prove about the quadrilateral formed by joining the centres of these squares?

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Square It game for an adult and child. Can you come up with a way of always winning this game?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

The classic vector racing game brought to a screen near you.

Use an Excel spreadsheet to explore long multiplication.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.