Take any parallelogram and draw squares on the sides of the parallelogram. What can you prove about the quadrilateral formed by joining the centres of these squares?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

How good are you at finding the formula for a number pattern ?

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Can you set the logic gates so that the number of bulbs which are on is the same as the number of switches which are on?

This resource contains interactive problems to support work on number sequences at Key Stage 4.

This resources contains a series of interactivities designed to support work on transformations at Key Stage 4.

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

A collection of our favourite pictorial problems, one for each day of Advent.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Can you work through these direct proofs, using our interactive proof sorters?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

An Excel spreadsheet with an investigation.

To avoid losing think of another very well known game where the patterns of play are similar.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

A tool for generating random integers.

Use an Excel spreadsheet to explore long multiplication.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

Six circles around a central circle make a flower. Watch the flower as you change the radii in this circle packing. Prove that with the given ratios of the radii the petals touch and fit perfectly.

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

Use this interactivity to sort out the steps of the proof of the formula for the sum of an arithmetic series. The 'thermometer' will tell you how you are doing

A spherical balloon lies inside a wire frame. How much do you need to deflate it to remove it from the frame if it remains a sphere?

A weekly challenge concerning prime numbers.

Give your further pure mathematics skills a workout with this interactive and reusable set of activities.

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Square It game for an adult and child. Can you come up with a way of always winning this game?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

The classic vector racing game brought to a screen near you.

Mathmo is a revision tool for post-16 mathematics. It's great installed as a smartphone app, but it works well in pads and desktops and notebooks too. Give yourself a mathematical workout!

Here is a chance to play a fractions version of the classic Countdown Game.