Take any parallelogram and draw squares on the sides of the parallelogram. What can you prove about the quadrilateral formed by joining the centres of these squares?

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

A tool for generating random integers.

A collection of our favourite pictorial problems, one for each day of Advent.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

An environment that enables you to investigate tessellations of regular polygons

Match pairs of cards so that they have equivalent ratios.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

This resources contains a series of interactivities designed to support work on transformations at Key Stage 4.

How good are you at finding the formula for a number pattern ?

This resource contains interactive problems to support work on number sequences at Key Stage 4.

A group of interactive resources to support work on percentages Key Stage 4.

Use Excel to investigate the effect of translations around a number grid.

Can you set the logic gates so that the number of bulbs which are on is the same as the number of switches which are on?

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

Use Excel to explore multiplication of fractions.

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

An Excel spreadsheet with an investigation.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an interactive Excel spreadsheet to explore number in this exciting game!

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Use an Excel spreadsheet to explore long multiplication.

Use Excel to practise adding and subtracting fractions.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

To avoid losing think of another very well known game where the patterns of play are similar.

Six circles around a central circle make a flower. Watch the flower as you change the radii in this circle packing. Prove that with the given ratios of the radii the petals touch and fit perfectly.

A spherical balloon lies inside a wire frame. How much do you need to deflate it to remove it from the frame if it remains a sphere?

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you beat the computer in the challenging strategy game?

Can you locate these values on this interactive logarithmic scale?

A weekly challenge concerning prime numbers.

Give your further pure mathematics skills a workout with this interactive and reusable set of activities.