Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

This resources contains a series of interactivities designed to support work on transformations at Key Stage 4.

Take any parallelogram and draw squares on the sides of the parallelogram. What can you prove about the quadrilateral formed by joining the centres of these squares?

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Use Excel to investigate the effect of translations around a number grid.

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Use an Excel spreadsheet to explore long multiplication.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Use Excel to explore multiplication of fractions.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use an interactive Excel spreadsheet to investigate factors and multiples.

A collection of our favourite pictorial problems, one for each day of Advent.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

The shortest path between any two points on a snooker table is the straight line between them but what if the ball must bounce off one wall, or 2 walls, or 3 walls?

Here is a chance to play a fractions version of the classic Countdown Game.

A tool for generating random integers.

An Excel spreadsheet with an investigation.

Use Excel to practise adding and subtracting fractions.

The classic vector racing game brought to a screen near you.

An environment that enables you to investigate tessellations of regular polygons

Match pairs of cards so that they have equivalent ratios.

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

This resource contains interactive problems to support work on number sequences at Key Stage 4.

Rotate a copy of the trapezium about the centre of the longest side of the blue triangle to make a square. Find the area of the square and then derive a formula for the area of the trapezium.

A metal puzzle which led to some mathematical questions.

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

A group of interactive resources to support work on percentages Key Stage 4.

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

How can we solve equations like 13x + 29y = 42 or 2x +4y = 13 with the solutions x and y being integers? Read this article to find out.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

How good are you at finding the formula for a number pattern ?

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Can you work out which spinners were used to generate the frequency charts?