A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Can you work out which spinners were used to generate the frequency charts?

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

Four cards are shuffled and placed into two piles of two. Starting with the first pile of cards - turn a card over... You win if all your cards end up in the trays before you run out of cards in. . . .

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

To avoid losing think of another very well known game where the patterns of play are similar.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Discover a handy way to describe reorderings and solve our anagram in the process.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A point P is selected anywhere inside an equilateral triangle. What can you say about the sum of the perpendicular distances from P to the sides of the triangle? Can you prove your conjecture?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

A collection of our favourite pictorial problems, one for each day of Advent.

A tool for generating random integers.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Use Excel to explore multiplication of fractions.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

The classic vector racing game brought to a screen near you.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Work out how to light up the single light. What's the rule?

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Here is a chance to play a fractions version of the classic Countdown Game.

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.