The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

A group of interactive resources to support work on percentages Key Stage 4.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

An activity based on the game 'Pelmanism'. Set your own level of challenge and beat your own previous best score.

Here is a chance to play a version of the classic Countdown Game.

Here is a chance to play a fractions version of the classic Countdown Game.

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Have you seen this way of doing multiplication ?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

To avoid losing think of another very well known game where the patterns of play are similar.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

A collection of our favourite pictorial problems, one for each day of Advent.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

How good are you at finding the formula for a number pattern ?

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

A tool for generating random integers.

This resource contains interactive problems to support work on number sequences at Key Stage 4.

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

The classic vector racing game brought to a screen near you.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Work out how to light up the single light. What's the rule?