Can you work out which spinners were used to generate the frequency charts?

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

Four cards are shuffled and placed into two piles of two. Starting with the first pile of cards - turn a card over... You win if all your cards end up in the trays before you run out of cards in. . . .

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Practice your skills of measurement and estimation using this interactive measurement tool based around fascinating images from biology.

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Which dilutions can you make using only 10ml pipettes?

How many different triangles can you make which consist of the centre point and two of the points on the edge? Can you work out each of their angles?

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

A tool for generating random integers.

Work out how to light up the single light. What's the rule?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.