This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Rotate a copy of the trapezium about the centre of the longest side of the blue triangle to make a square. Find the area of the square and then derive a formula for the area of the trapezium.

Can you beat the computer in the challenging strategy game?

To avoid losing think of another very well known game where the patterns of play are similar.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

How good are you at finding the formula for a number pattern ?

A collection of resources to support work on Factors and Multiples at Secondary level.

Cellular is an animation that helps you make geometric sequences composed of square cells.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Have you seen this way of doing multiplication ?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

This resource contains interactive problems to support work on number sequences at Key Stage 4.

Discover a handy way to describe reorderings and solve our anagram in the process.

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

An environment that enables you to investigate tessellations of regular polygons

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Use Excel to explore multiplication of fractions.

Prove Pythagoras Theorem using enlargements and scale factors.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects the distance it travels at each stage.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

A metal puzzle which led to some mathematical questions.