Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

This resources contains a series of interactivities designed to support work on transformations at Key Stage 4.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

An environment that enables you to investigate tessellations of regular polygons

To avoid losing think of another very well known game where the patterns of play are similar.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Match pairs of cards so that they have equivalent ratios.

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Use Excel to explore multiplication of fractions.

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

Can you beat the computer in the challenging strategy game?

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

A tool for generating random integers.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

A collection of our favourite pictorial problems, one for each day of Advent.

Here is a chance to play a fractions version of the classic Countdown Game.

Can you set the logic gates so that the number of bulbs which are on is the same as the number of switches which are on?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Square It game for an adult and child. Can you come up with a way of always winning this game?