When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Can you beat the computer in the challenging strategy game?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

An environment that enables you to investigate tessellations of regular polygons

Match the cards of the same value.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

To avoid losing think of another very well known game where the patterns of play are similar.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Match pairs of cards so that they have equivalent ratios.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

An Excel spreadsheet with an investigation.