Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Match pairs of cards so that they have equivalent ratios.

An environment that enables you to investigate tessellations of regular polygons

Discover a handy way to describe reorderings and solve our anagram in the process.

A metal puzzle which led to some mathematical questions.

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its vertical and horizontal movement at each stage.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

This resource contains interactive problems to support work on number sequences at Key Stage 4.

This resources contains a series of interactivities designed to support work on transformations at Key Stage 4.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects the distance it travels at each stage.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Use Excel to explore multiplication of fractions.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Can you beat the computer in the challenging strategy game?

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its speed at each stage.

An Excel spreadsheet with an investigation.

The classic vector racing game brought to a screen near you.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Use Excel to practise adding and subtracting fractions.

Use an Excel spreadsheet to explore long multiplication.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

A collection of resources to support work on Factors and Multiples at Secondary level.

A tool for generating random integers.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

A collection of our favourite pictorial problems, one for each day of Advent.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Here is a chance to play a fractions version of the classic Countdown Game.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use Excel to investigate the effect of translations around a number grid.

Square It game for an adult and child. Can you come up with a way of always winning this game?