What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

A metal puzzle which led to some mathematical questions.

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

To avoid losing think of another very well known game where the patterns of play are similar.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Square It game for an adult and child. Can you come up with a way of always winning this game?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Use Excel to explore multiplication of fractions.

Prove Pythagoras' Theorem using enlargements and scale factors.

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

The classic vector racing game brought to a screen near you.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Here is a chance to play a fractions version of the classic Countdown Game.

Can you set the logic gates so that the number of bulbs which are on is the same as the number of switches which are on?