Practice your skills of measurement and estimation using this interactive measurement tool based around fascinating images from biology.

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Which dilutions can you make using only 10ml pipettes?

Can you fill in the mixed up numbers in this dilution calculation?

Can you break down this conversion process into logical steps?

Which dilutions can you make using 10ml pipettes and 100ml measuring cylinders?

Which exact dilution ratios can you make using only 2 dilutions?

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Explore displacement/time and velocity/time graphs with this mouse motion sensor.

Match the cards of the same value.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects the distance it travels at each stage.

A group of interactive resources to support work on percentages Key Stage 4.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its vertical and horizontal movement at each stage.

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Use Excel to explore multiplication of fractions.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Use Excel to investigate the effect of translations around a number grid.

Match pairs of cards so that they have equivalent ratios.

Use an interactive Excel spreadsheet to investigate factors and multiples.

This set of resources for teachers offers interactive environments to support work on graphical interpretation at Key Stage 4.

A collection of our favourite pictorial problems, one for each day of Advent.

Here is a chance to play a fractions version of the classic Countdown Game.

Use an Excel spreadsheet to explore long multiplication.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

Practise your skills of proportional reasoning with this interactive haemocytometer.

Use Excel to practise adding and subtracting fractions.

An Excel spreadsheet with an investigation.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an interactive Excel spreadsheet to explore number in this exciting game!

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

To avoid losing think of another very well known game where the patterns of play are similar.

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.