Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

Find the frequency distribution for ordinary English, and use it to help you crack the code.

A game in which players take it in turns to choose a number. Can you block your opponent?

A collection of resources to support work on Factors and Multiples at Secondary level.

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Can you work out which spinners were used to generate the frequency charts?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Work out how to light up the single light. What's the rule?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Have you seen this way of doing multiplication ?

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Here is a chance to play a version of the classic Countdown Game.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

To avoid losing think of another very well known game where the patterns of play are similar.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Four cards are shuffled and placed into two piles of two. Starting with the first pile of cards - turn a card over... You win if all your cards end up in the trays before you run out of cards in. . . .

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.